Video Representation Learning Using Discriminative Pooling

نویسندگان

  • Jue Wang
  • Anoop Cherian
  • Fatih Porikli
  • Stephen Gould
چکیده

Popular deep models for action recognition in videos generate independent predictions for short clips, which are then pooled heuristically to assign an action label to the full video segment. As not all frames may characterize the underlying action—indeed, many are common across multiple actions—pooling schemes that impose equal importance on all frames might be unfavorable. In an attempt to tackle this problem, we propose discriminative pooling, based on the notion that among the deep features generated on all short clips, there is at least one that characterizes the action. To this end, we learn a (nonlinear) hyperplane that separates this unknown, yet discriminative, feature from the rest. Applying multiple instance learning in a large-margin setup, we use the parameters of this separating hyperplane as a descriptor for the full video segment. Since these parameters are directly related to the support vectors in a maxmargin framework, they serve as robust representations for pooling of the features. We formulate a joint objective and an efficient solver that learns these hyperplanes per video and the corresponding action classifiers over the hyperplanes. Our pooling scheme is end-to-end trainable within a deep framework. We report results from experiments on three benchmark datasets spanning a variety of challenges and demonstrate state-of-the-art performance across these tasks.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Learning Compact Appearance Representation for Video-based Person Re-Identification

This paper presents a novel approach for video-based person re-identification using multiple Convolutional Neural Networks (CNNs). Unlike previous work, we intend to extract a compact yet discriminative appearance representation from several frames rather than the whole sequence. Specifically, given a video, the representative frames are selected based on the walking profile of consecutive fram...

متن کامل

Learning End-to-end Video Classification with Rank-Pooling

We introduce a new model for representation learning and classification of video sequences. Our model is based on a convolutional neural network coupled with a novel temporal pooling layer. The temporal pooling layer relies on an inner-optimization problem to efficiently encode temporal semantics over arbitrarily long video clips into a fixed-length vector representation. Importantly, the repre...

متن کامل

Order-aware Convolutional Pooling for Video Based Action Recognition

Most video based action recognition approaches create the video-level representation by temporally pooling the features extracted at each frame. The pooling methods that they adopt, however, usually completely or partially neglect the dynamic information contained in the temporal domain, which may undermine the discriminative power of the resulting video representation since the video sequence ...

متن کامل

A Learning-based Frame Pooling Model For Event Detection

Detecting complex events in a large video collection crawled from video websites is a challenging task. When applying directly good image-based feature representation, e.g., HOG, SIFT, to videos, we have to face the problem of how to pool multiple frame feature representations into one feature representation. In this paper, we propose a novel learning-based frame pooling method. We formulate th...

متن کامل

PCANet-II: When PCANet Meets the Second Order Pooling

PCANet, as one noticeable shallow network, employs the histogram representation for feature pooling. However, there are three main problems about this kind of pooling method. First, the histogram-based pooling method binarizes the feature maps and leads to inevitable discriminative information loss. Second, it is difficult to effectively combine other visual cues into a compact representation, ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2018